
Week 4 - Friday

 What did we talk about last time?
 Doubly linked list implementation

Bitmap Manipulator

 Dynamic array
 Advantages: pop and top are O(1)
 Disadvantages: limited size, making push O(n) in the worst case (still

O(1) amortized)
 Linked list
 Advantages: push, pop, and top are O(1)
 Disadvantages: slightly slower than the array version, considerably

more memory overhead

public class ListStack<T> {
private static class Node<T> {
public T data;
public Node<T> next;

}

private Node<T> top = null;
private int size = 0;

public void push(T value) {}
public T pop() {}
public T peek() {} // instead of top
public int size() {}

}

 Circular array
 Advantages: dequeue and front are O(1)
 Disadvantages: limited size, making enqueue O(n) in the worst case

(still O(1) amortized)
 Linked list
 Advantages: enqueue, dequeue, and front are O(1)
 Disadvantages: slightly slower than the array version, considerably

more memory overhead

class ListQueue<T> {
private class Node<T> {
public T data;
public Node<T> next;

}
private Node<T> head = null;
private Node<T> tail = null;
private int size = 0;

public void enqueue(T value) {}
public T dequeue() {}
public T front() {}
public int size() {}

}

 Programming model
 Java
 OOP
 Polymorphism
 Interfaces
 Exceptions
 Generics

 Java Collections Framework

 Big Oh Notation
 Formal definition: f(n) is O(g(n)) if and only if
▪ f(n) ≤ c∙g(n) for all n > N
▪ for some positive real numbers c and N

 Worst-case, asymptotic, upper bound of running time
 Ignore lower-order terms and constants

 Big Omega and Big Theta
 Abstract Data Types
 Array-backed list

 Stacks
 FILO data structure
 Operations: push, pop, top, empty
 Dynamic array implementation

 Queues
 FIFO data structure
 Operations: enqueue, dequeue, front, empty
 Circular (dynamic) array implementation

 JCF implementations: Deque<T> interface
 ArrayDeque<T>
 LinkedList<T>

 Linked lists
 Performance issues
 Single vs. double
 Insert, delete, find times

 Linked list implementation of stacks
 Linked list implementation of queues

 Let M and N be two integers, where M is no larger than N
 Use Big Θ notation to give a tight upper bound, in terms of N,

on the time that it will take to
 Add M and N (by hand, using the normal algorithm)
 Multiply M and N (by hand, using the normal algorithm)

 Use Big Θ notation to give the same bounds but this time in
terms of n, where n is the number of digits in N

int end = n;
int count = 0;
for (int i = 1; i <= n; i++) {
end /= 2;
for (int j = 1; j <= end; j++) {
count++;

}
}

int end = n;
int count = 0;
for (int i = 1; i <= n*n; i+=2) {

count++;
}

int count = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n/j; j++) {
count++;

}
}

 If we increase the R, G, and B values of every pixel by 25%, the image will
get lighter

 Let Color be the following:
public class Color {

public int red;
public int green;
public int blue;

}
 Let pixels be a Color[][] array with height rows and width

columns
 Write the code to lighten the image by 25% (by multiplying by 1.25)
 Don't forget to round the results before storing them back into each color

component

Assume the following:

public class List {
private static class Node {
public int data;
public Node next;

}

private Node head = null;
…

}

Write a method in List that reverses the linked list.

public void reverse() {
if (head != null) {

Node reversed = head;
Node temp = head;
Node rest = head.next;
temp.next = null;
while(rest != null) {

temp = rest;
rest = rest.next;
temp.next = reversed;
reversed = temp;

}
head = reversed;

}
}

 Write a method that takes a CharBuffer object
 The CharBuffer object has two methods:
 nextChar() which extracts a char from the input stream
 hasNextChar() which returns true as long as there is another char to

extract
 The method should return true if the input stream is a

palindrome (the same backwards as forwards) and false
otherwise

 Use no String objects or arrays (other than the ones embedded
in the stack)

 Hint: Use at least 3 JCF Deque (stack) objects

 Exam 1!

 Keep reading Chapter 3
 Finish Project 1
 Due tonight by midnight!

 Exam 1 next Monday

	COMP 2100
	Last time
	Questions?
	Project 1
	Linked List Stack
	Stack Implementations
	Linked list implementation
	Linked List Push
	Linked List Pop
	Linked List Peek
	Linked List Size
	Queue Implementations
	Linked list implementation
	Linked List Front
	Linked List Size
	Linked List Enqueue
	Linked List Dequeue
	Review
	Week 1
	Week 2
	Week 3
	Week 4
	Sample Problems
	Running time
	What's the running time in Θ?
	What's the running time in Θ?
	What's the running time in Θ?
	Lighten
	Reverse a linked list
	Code to reverse a linked list
	Palindrome
	Upcoming
	Next time…
	Reminders

