
Week 4 - Friday



 What did we talk about last time?
 Doubly linked list implementation





Bitmap Manipulator





 Dynamic array
 Advantages: pop and top are O(1)
 Disadvantages: limited size, making push O(n) in the worst case (still 

O(1) amortized)
 Linked list
 Advantages: push, pop, and top are O(1) 
 Disadvantages: slightly slower than the array version, considerably 

more memory overhead



public class ListStack<T> {
private static class Node<T> {
public T data;
public Node<T> next;

}

private Node<T> top = null;
private int size = 0;

public void push(T value) {}
public T pop() {}
public T peek() {} // instead of top
public int size() {}

}











 Circular array
 Advantages: dequeue and front are O(1)
 Disadvantages: limited size, making enqueue O(n) in the worst case 

(still O(1) amortized)
 Linked list
 Advantages: enqueue, dequeue, and front are O(1) 
 Disadvantages: slightly slower than the array version, considerably 

more memory overhead



class ListQueue<T> {
private class Node<T> {
public T data;
public Node<T> next;

}
private Node<T> head = null;
private Node<T> tail = null;
private int size = 0;

public void enqueue(T value) {}
public T dequeue() {}
public T front() {}
public int size() {}

}













 Programming model
 Java
 OOP
 Polymorphism
 Interfaces
 Exceptions
 Generics

 Java Collections Framework



 Big Oh Notation
 Formal definition:  f(n) is O(g(n)) if and only if
▪ f(n) ≤ c∙g(n) for all n > N
▪ for some positive real numbers c and N

 Worst-case, asymptotic, upper bound of running time
 Ignore lower-order terms and constants

 Big Omega and Big Theta
 Abstract Data Types
 Array-backed list



 Stacks
 FILO data structure
 Operations: push, pop, top, empty
 Dynamic array implementation

 Queues
 FIFO data structure
 Operations: enqueue, dequeue, front, empty
 Circular (dynamic) array implementation

 JCF implementations: Deque<T> interface
 ArrayDeque<T>
 LinkedList<T>



 Linked lists
 Performance issues
 Single vs. double
 Insert, delete, find times

 Linked list implementation of stacks
 Linked list implementation of queues





 Let M and N be two integers, where M is no larger than N
 Use Big Θ notation to give a tight upper bound, in terms of N, 

on the time that it will take to
 Add M and N (by hand, using the normal algorithm)
 Multiply M and N (by hand, using the normal algorithm)

 Use Big Θ notation to give the same bounds but this time in 
terms of n, where n is the number of digits in N



int end = n;
int count = 0;
for (int i = 1; i <= n; i++) {
end /= 2;
for (int j = 1; j <= end; j++) {
count++;

}
}



int end = n;
int count = 0;
for (int i = 1; i <= n*n; i+=2) {

count++;
}



int count = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n/j; j++) {
count++;

}
}



 If we increase the R, G, and B values of every pixel by 25%, the image will 
get lighter

 Let Color be the following:
public class Color {

public int red;
public int green;
public int blue;

}
 Let pixels be a Color[][] array with height rows and width

columns
 Write the code to lighten the image by 25% (by multiplying by 1.25)
 Don't forget to round the results before storing them back into each color 

component



Assume the following:

public class List {
private static class Node {
public int data;
public Node next;

}

private Node head = null;
…

}

Write a method in List that reverses the linked list.



public void reverse() {
if (head != null) {

Node reversed = head;
Node temp = head;
Node rest = head.next;
temp.next = null;
while(rest != null) {

temp = rest;
rest = rest.next;
temp.next = reversed;
reversed = temp;

}
head = reversed;

}
}



 Write a method that takes a CharBuffer object
 The CharBuffer object has two methods:
 nextChar() which extracts a char from the input stream
 hasNextChar() which returns true as long as there is another char to 

extract
 The method should return true if the input stream is a 

palindrome (the same backwards as forwards) and false
otherwise

 Use no String objects or arrays (other than the ones embedded 
in the stack)

 Hint: Use at least 3 JCF Deque (stack) objects





 Exam 1!



 Keep reading Chapter 3
 Finish Project 1
 Due  tonight by midnight!

 Exam 1 next Monday
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